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It is shown that as the film Reynolds number increases there must be a transition 
from two-dimensional to three-dimensional waves. All the characteristics of both 
types of waves are determined. 

When the stability of the laminar flow of a thin liquid layer is disturbed (see review 
in [i]), long two-dimensional waves appear close to the curve of neutral stability; the ampli- 
tude of these waves increases monotonically from zero as the supercriticality increases. In 
natural flows (i.e., without the superimposition of external excitation) a quite specific 
steady-state wavy regime is set up with charar which are uniquely determined by the 
slope of the support plane and the flow rate and physical properties of the liquid. In con- 
trast to this, the theory usually leads to the conclusion that a single-parametric family of 
wavy regimes exists, and that in order to discriminate the regime which actually occurs from 
among the multiplicity of possible regimes it is necessary to make an additional hypothesis. 

In this connection, use has been made earlier of the hypothesis of the minimality of the 
viscous dissipation of energy in the film [2] or of its mean thickness [3] at a given flow 
rate of the liquid, or of the assumption that for the steady-state, mildly nonlinear, almost 
harmonic waves, the wavelengths coincide with the analogous value for the wave of maximum 
growth obtained within the framework of the linear theory [4]. In actual fact there is no 
need for such additional hypotheses. If it is assumed that a steady-state periodic flow re- 
gime with a definite wave length in fact exists and is stable, then it must possess the fol- 
lowing properties. Firstly, the corresponding increment of growth of the fluctuation (the 
imaginary part of the complex wave frequency) must tend to zero (the condition for the steady 
state to exist). Secondly, the waves whose lengths differ from'those of the favored waves 
must be damped, i.e., the zero value of the increment, considered as a function of the wave 
number with all the other parameters constant, must be a maximum (the periodicity condition). 
These conditions, which were first introduced for one-dimensional flows in [5], appear to be 
sufficient to uniquely define the characteristics of the steady-state, mildly nonlinear regime 
of flow of liquid films with two-dimensional waves [6, 7], 

As shown below, analogous arguments make it possible to determine the characteristics of 
steady-state regimes with three-dimensnional waves, and also to determine the conditions under 
which the transition occurs from two-dimensional to three-dimensional flow. Bearing in mind 
mainly the principles of the matter, we will use here only the simplest evolution equations 
for the relative liquid film thickness: 
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The x axis is directed downwardly with respect to the flow, with the y axis normal to it in 
the plane of the support; the z axis is normal to this plane. The dimensional coordinates x 
y, z are referred to the scale parameter he. 

The dimensionless velocity component in the direction of the flow referred to the scale 
uo can be represented in the following form to an accuracy corresponding to that assumed in 
(1) : 

dq~ 
vx=3  1--(tgcz)~--x + 

c o s  = Ox 
(3) 

Equation (i) and the expression (3) are valid for three-dimensional flow when ~<<1, 
eRe~,~ 2, tga~<l, ~We~,i(e=ho~,  where % is the wave length), and are obtained from the system 
of equations for the hydrodynamics to the thin liquid film approximation and the corresponding 
boundary conditions completely analogously to the evolution equation and the expression for v x 
in two-dimensional flows, which are valid for the same conditions [6]. In fact, the latter 
are very restrictive, and we should consider instead of (i) a more complex variant of the evo- 
lution equation whose analogy for two-dimensional flow is formulated in [6, 7]. The use of 
(i) has the advantage that all the important results can be obtained analytically without the 
need to fall back on numerical investigations. 

Let us represent the unknown Eq. (i) in the form (*): 

, r y, t )=  ~ %~(Y) e~"(~ , r = O,~(l+~,~(y)), 
. ~  (4) 

... frlmly 
r  (v) = v ~ e  , ~_~ (y) = ~ * (y) 

0*=--00, m~=O 

(the superscript asterisk denotes complex conjugation), where the wave numbers k and I are as- 
sumed to be real and nonnegative. Because of the choice of the origin from which the time is 
meaasured or the longitudinal coordinate, it is possible to make the amplitude of the main har- 
monic ~x real and positive; it is assumed furthermore that ~L = ~q, q << i. From a simple an- 
alysis, it follows that l~nl~q Intl2, l~olNq [5] . Equation (i) was derived to an accuracy of 
terms of the order l~s~q si~ inclusive. Hence, in the use of q as a small parameter in the 
sum with respect to n in Eq. (4) it is necessary to retain on!y:the harmonics with Inl ~ 2 in 
avoiding exceeding the accuracy. In the sums with respect to m it is also necessary to take 
into account only the terms with Iml < 2~ since it can be shown that the retention of terms 
with Iml > 2 leads to the appearance i--n the ratio obtained previously of quantities whose or- 
der is not less than q2. 

By substituting (4) into (I) and collecting the terms proportional to the various harmon- 
its in the usual way, a system of algebraic equations is obtained for the coefficients #n and 
~nm introduced in Eq. (4). An additional equation (which makes it possible to determine 40) 
can be found from the condition that the flow rate of the liquid, averaged with respect to x 
and y, where the liquid flows with the velocity (3), can be equated to the corresponding quan- 
tities in a plane-parallel flow (i.e., to unity in terms of the dimensionless variables Which 
have been introduced). From these equations, the following relationships are obtained after 
simple though cumbersome compU=ations 

3ik 
e0 = --2(I + 2WIW-~0q, e~=-- (I + 2WL)q, 

as 

*Strictly speaking, the function(4) can represent the solution of the problem being considered 
only if ~ is also real. If ~ = ~-- iy, and y # 0, then (4) is not a solution. At the same 
time, to obtain a positive value for the periodicity, as mentioned above, it is necessary to 
consider the solution not only at the point y = 0 (which is quite sufficient for deriving the 
relationship for the characteristics of steady-state waves from their lengths and physical and 
regime parameters), but also at other points, even though these may be only a small distance 
from this point. The latter makes the computations quite cumbersome. Hence, in the text the 
evaluation is carried out using the expansion (4) formally and with ~ ~ O, while the basis for 
the validity of this procedure and the condition of periodicity, which makes it possible to de- 
termine the length of the steady-state waves in practice, are given in the Appendix. 
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6ik 3ik O~W~-- ~nq, cD~T~= T~q,  
a~ - a5 

~Fr,. = - 3_k_k [(  6 k a ~  as i) T~ '+  2 ( 6"-~ka~ - - i ?  Thug-n ,  q" 

(5) 

In addition, by substituting (5) into the remaining unused algebraic equations for the 
coefficients, it is found that: 

ao-}-3k i~--q- 3i-}- 2(v+iw)  6kaz 24k 
ai (6) 

{ )(  )} a~-~-3k 12k + 2 i + ( v _ _ i w )  --6k _ i  -}- 12k _}___6k _}_5i r q----O. 
aA /~ ~3 a5 

Here we have introduced the variables 

r -- lIflllIY_ii --: [liflil2 , 0 2 ~- ~2 ~ 1, 

and the notation 

ao = i (co - -  3k) - -  Ak 2 + Bk~, a~=i (o~ - -  3k) - -  Ak 2 -k B (k ~ + 12) 2 -k ( tg  (z) 12, 

a~= i (o) - -  3k) - -  A I s  ( k ~ + 4 l ~ ) ~ + 4  ( tg  ~)  l~, as----/(o) - -  3k) - -  2Ak~+8Bk ~, 

a~ = i ((o - -  3k) - -  2Ak 2 t -  8B (k ~ + 12)2 + 2 ( tg  a )  I ~, 

a5 = i (co - -  3k) - -  2Ak 2 + 8B (k 2 + 4/~)~-t- 8 ( t g  a )  t ~, 

6 W e  
A =  R e - - f  go:, B =  

5 cos ~z 

(7) 

(8) 

From the requirement of compatibility of the equations in (6) w~en r = 0, ~ = 0, it fol- 
lows that v = --i, w = 0; when Eq. (7) is taken into account it is therefore found that v = 

For given values of k, l, and q, Eq. (6) serves for determining the complex quantities 
~t and ~ = ~ -- iy; the remaining coefficients from (4) can be found in accordance with (5). 
In addition to (6), according to what was noted above, for steady-state, almost harmonic waves 
there also exists the equation: 

= O, a?/ak - 0 ,  a?/al = 0, ( 9 )  

from which it is possible in principle to determine both the wave numbers and the amplitudes 
of the main harmonics. Thus, the four effective equations resulting from (6) and the equa- 
tions (9) make up a system of seven equations for determining the real quantities y, ~, k, 2, 
and q, and also the modulus and argument of the complex coefficient Vt,. The steady-state 
wavy regime of the type being considered is possible if the extremal value of y actually oc- 
curs in the open first quadrant of the (k, ~) plane and represents a maximum of y, with the 
corresponding q > 0. A maximum of y can also be reached in principle on the boundary Z = 0 
of this quadrant; in this case, the regime Of flow with two-dimensional waves is possible, 

Let us now give the results of an investigation of this system of algebraic equations. 
First, when q § 0 it is found from (6) that ao = a~ = 0, which represents the known dispersion 
relationship of the linear theory for two- and three-dimensional waves. The stability of the 
laminar plane-parallel flow is disrupted when 

Re>Re,1 = 5/6tg~ (I0) 
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with respect to waves with k = Z = 0, while (9) determines the wave number of the wave of max- 
imum growth when Re > Re, . The critical value Re, of the film Reynolds number determines the 

i I 
first bifurcation of the evolution equation (i). 

If q # 0, and Re only slightly exceeds Re,~, then the maximum is achieved at I = O, i.e., 
for two-dimensional waves. In this case, the system of equations reduces to the form consid- 
ered in [6]: 

( ) 1 / 2  ( @ ) 1 / 2  A3 
k = ko= 8-[--['/4-3 A 0,833 , q = % . ~ , 0 , 0 4 6 - -  

21 B B ' (11)  

f~ = ~o = coko, Co = 3 ( 1 -  3 % ) ~  3 (1 --0,138An~B), 

where A can be represented as 6/5(Re -- Re,x). 
considered in obtaining (!i). 

In the general case, the system 
By expressing the quantities ~ and 
sentations which are obtained, it is 

~=3 

The last of the equations of Eq. (9) was not 

of seven equations can be conveniently solved as follows. 
from both of the equations in (6) and equating the repre- 
found that 

w = - -  (k/6) (TBk z -  A) r, (12)  

and also, by taking into account (8) and (12): 

? = Ak2 --. B k  ~ - -  18 (TBk ~ - -  A)-~q + 36 {(TBk 2 --,A) -1 - -  

- -  2k 2 [8B (k 2 -k- 12) 2 - "  A k2 - -  B k~ q- 2 (tg ~) 121-~} rq = 

= A k  2 - -  B ( k  2 + 12) ~ - -  (,tg 0~) l ~ + 18 { ( T B k  2 - -  A)  -~ - -  

- -  2k 2 [7B (k ~ + 12) 2 - -  A k  2 + (tg =) 12] -~} q + k z { 1/2 (7Bk z - -  A) - -  

-- 36 [8Bk~ - -  Ak2 - -  B (k 2 + i2)2 _ (tg cz) 121 -~ - -  

- -  18 [B (7k~ -1- 62k212 -t- 1271~) - -  Ak  2 %- 7 (tg o~) lZl -~ } rq. 
(14) 

Thus, from (9) and (14) there is a system of four equations for determining k, l, q, and 
r. It is assumed that the regime of flow with three-dimensional waves is possible when Re > 
Re,a, and this system of equations is solved by the method of small parameters, using expan- 
sions of the unknowns with respect to powers of B, i.e.~ 

k 2 = kg -f- ~k] q- . . . .  q =: % -}- ~ql -t- . . . .  
(15) 

12 = ~l~  -I-, . . . .  r = ~r~ -t- . . . .  ~ = R e  - -  R e , ~ .  

Hence, it is not difficult to obtain equations corresponding to different approximations with 
respect to B. From the equation of the zeroth approximation it is possible to find firstly 
equation (ii) for ko and qo, and secondly, the equation 

Re,~ ~ 5,23 tg ~, (16) 

which was obtained from the last equation of Eq. (9). This formula determines the second bi- 
furcation corresponding to the transition from the steady-state two-dimensional to the steady- 
state three-dimensional wavy-flow regime. 

The equations of the first approximation give 

0,832 0,017 k~ ~ , l ~ - - ,  q1~ '0 ,164  A2* , r 1 = 0 ,  
B B B (17) 

A,  = 615Re,~ -- tg ~ ~ 5,28 tg ~. 

From (12) and (13) it is now easy to obtain corresponding to (15) representations for w~ 
fi, and also for the phase velocity c of the traveling waves. Thus, 
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Fig. I. Dependence of the square of the wave amplitude (a) and 
of the phase velocity (b) on the Reynolds number for ~ = ~/6 
and ~/4 (curves i and 2, respectively); the points correspond to 
the transition from two- to three-dimensional waves; the dashed 
lines refer to two-dimensional waves in the zone where three- 
dimensional waves occur. 

w = 1 ~ ,  + . . . .  ~ = eo + 1~ ,  + . . . .  c = co + ~,c, + . . . .  (18) 

while for Qo and Co the formulas in (Ii) are valid as before, and 

3 k~ ( 1 - -  3qo) - -  9k0qt, ml=O, o ~ = - - 9 q l .  (19)  
ko 

By making use of (5) it is possible to find an expansion of the coefficients in the sums 
of (4) in terms of powers of the supercriticality B, and to write a final expression for ~(x, 
y, t). In order to conserve on space, these expressions are not given, but it can be noted 
that in spite of the equality of the quantity rz to zero (and consequently, the absence of a 
term proportional to B in the expansion for ~z,), the coefficients for B in the expansions of 
Pz= and ~=, appear to be different to zero. In order to determine the main terms B=r= and 
B2~= in the expansions of r and m it is necessary to consider the system of equations to the 
second approximation The result is 

0,0007 A ,  ko (TBk~ - -  A,)  
r~ ,~ - -  , m~ = -- r~. (20) 

1 -I- O,095A~/B B 6 

It can be shown that the increment y reaches its maximum precisely at the point being 
considered in the plane (k, Z). 

Thus, the parametric plane (Re, ~) can be brokwn down into three zones. The zone Re < 
Re,z corresponds to stable plane-parallel flow, the zone Re,= > Re > Re, z to steady-state 
two-dimensional wavy flow, and the zone Re > Re, to steady-state flow with thmee-dimensional 

�9 . . 2  
waves. For films on a vertlcal wall both crztlcal values of the Reynolds number tend towards 
zero, i.e., only the third zone exists. The dependence of q and c on Re at ~ = z/6 and v/4 
(curves 1 and 2, respectively) are shown in Fig. i. The solid lines correspond to the regime 
which is actually established, while the dashed lines correspond to the regime with two-dimen- 
sional waves in the zone Re > Re,=; the points mark the bifurcations. For the three-dimen- 
sional waves the amplitude q increases and the velocity c decreases with increase of Re in 
the zone Re > Re,2 somewhat more slowly than for the two-dimensional flows. On the whole, 
this is in agreement with the experimentally observed trends [I]. 

Equation (I) is approximately valid at small values of the Reynolds number [6]. It can 
be extended into the zone of larger Reynolds numbers by using other, more complex, evolution 
equations, analogously to the equations for two-dimensional wavy flows in [6, 7]. It is not 
difficult to obtain such equations, but the calculation of the parameters of the three-dimen- 
sional wavy regime appears to be very time-consuming. The results [7] obtained for two-dimen- 
sional wavy flow can be regarded as approximations to the real three-dimensional flows which 
are established at larger values of Re. 

It should be noted that in order to obtain physicallycomprehensible results when Re ~ 1 
it is not sufficient to simply increase the number of the terms taken into account in the ex- 
pansion (4) while leaving the evolution equation unchanged. As noted previously in [6], this 

277 



would mean an increase in the accuracy of the evolution equation. In general, attempts to 
construct waves which are strongly nonlinear (when ~ ~ I) on the basis of an analysis of equa- 
tions obtained with the assumption that ~ << 1 are physically absurd in the opinion of the 
authors, and at best can be regarded as purely mathematical exercises. Examples of such at- 
tempts can be found in [8], and also in a number of other papers. 

Investigations of slightly nonlinear three-dimensional waves are known from the litera- 
ture [9-11]. However, as in the case of many analogous papers on two-dimensional waves also, 
the wave lengths in the longitudinal and transverse directions or the corresponding wave num- 
bers are regarded as quantities which are specified a priori. In this connection, it is pos- 
sible to note the difference of the present work from these investigations; the main result 
of the present work consist not so much of determining the dependence of the characteristics 
of the wavy regime on these wave numbers as indicating the route to be used in principle for 
determining the latter. 

In conclusion it should be noted that here we have not considered the problem of the 
stability of the steady-state regimes with two- and three-dimensional waves which have been 
considered. The effective solution of this problem constitutes an independent topic and can 
obviously be obtained by using the method proposed in [12] and further developed in a number 
of subsequent papers. 

APPENDIX 

We will confine our attention to the analysis of the equation: 

O[ ~- F ([, O[ , 02[ ) ----0 (AI) 
Ot Ox Ox 2 

with a single spatial variable x, in which F is some nonlinear function (it may in addition 
depend on the parameter). Generalization to the situation with two spatial parameters does 
not present difficulties in principle, but complicates the computations. Let us assume that 
(AI) has a single periodic solution corresponding to a stationary wave, which can be repre- 
sented in the form of the convergent series 

o @o 
[ ,  (t, x) = O~e~(a*t-h*~>, - -  = @~*" (A2) 

n ~ - - o o  

o 

The existence and uniqueness of the solution (A2) means that the values Of the constants On, 
~,, k, are uniquely determined. 

Let us consider the nonsteady-state solution of Eq. (AI): 

f~ (t, X) : ~ (I0n (l) e in(~t-kx), q)--n (t) : qk~n (t), (A3)  
t ~ : - - o o  

where a, k are real positive numbers. By substituting (A3) into (AI) a system of equations 
is obtained after simple rearrangements for the coefficients of the series (A3): 

d@. = c~.@. -b c*~lcI)._z~ + c*~z~,~O~-zOz-~-r . . . .  (A4) 
dt ~=_oo m=-= 

where the values of e, which depend on ~ and k, are completely determined by the form of the 
function F. 

Feebly nonlinear processes described by the solutions (A2) or (A3) usually develop from 
mild disturbances of the stability of some steady-state process which is described by a solu- 
tion of Eq. (AI) which does not depend on t. It is known that in this case the amplitudes 
of the various harmonics in (A2) and (A3) satisfy the sequence relationship 

lOo[ "-" q, I ~ I - - "  ql.l12, n=/=O, q = I%1 ~ 

and can be represented in the form of series 

2 . o  = ~ %2/_ a ~ojqi, . ~  = . ~ I  ~ j q i ,  n =/= O, (AS) 
]=0 ] =0 
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which converge at sufficiently small values of q and are termwise differentiable with respect 
to the variable t, ~aich in this case plays the role of a parameter (see, for instance, [5], 
and also [13, 14]). The coefficients B depend on k and ft. 

It is clear that it is sufficient to consider Eq. (A4) only for the case when n > 0. 
The right-hand part of any such equation can be expressed directly by using (A5) in the form 
of an expansion in powers of q multiplied by ~ n. An analogous representation for the left- 
hand side is obtained after differentiation of the c~rresponding series (AS), substitution 
into the result of the expressions for dcx/dt and d@:/dt = d~_:/dt ~ich result from (A4) 
when n = • and using the series (A5). By equating these expansions, equations are obtained 
which confirm the equality to zero of the products of ~ n with an infinite sum of terms pro- 
portional to qm(m > 0). Since in this case q must be regarded as an arbitrary quantity, the 
coefficients on th~various powers of q must be separately equal to zero. A system of recurs- 
ive equations follows from this from which it is not difficult to find in turn all the coeffi- 
cients B which appear in (A5) as functions of the quantities = introduced in (A4). Because 
of their extremely cumbersome form, all these equations are not written OUt, but the expres- 
sion 

~o = ~2: (2~i - -  ~ ) - :  (A6) 

is given for the coefficients determining the main terms in the expansion (A5) for the ampli- 
tude of the second harmonic. 

By substituting (AS) into Eq. (A4) with n = i, it is found that 

--~:H, H(~,  k, q)=  X~Dqi, q = 1~f ~, (A7) 
dt /=o 

where q is described in a specified way in terms of ~ and B, i.e., ~ also depends on k and 
~. By multiplying (A7) by ~I and combining the equations which are obtained with the complex 
conjugates, it is found that 

oo 

dq = 2 q F ,  I'(f~, k, q ) : X y ~ q i ,  yj:Rer D. 
dt /=o 

(AS) 

The function P in the right-hand part of (A8) has the significance of a nonlinear growth 
O 

increment of the main (first) harmonic. The periodic solution ~i = ~:, q = q, = I~:l 2 corres- 
ponds to the solution (A2); in addition, the right-hand parts of equations (A7) and (A8) should 
tend to zero, which determines the parameters k, and 2,. The remaining coefficients o in 
(A2) are evaluated from (AS) with the given values of the parameters. (It should be n~ted 
that in fact all such evaluations are carried out with some precision with respect to small 
values of q, which is specified a priori.) 

A function y(k) = F(~(k, q,), k, q,) is now introduced, where ~(k, q,) is the solution 
to the equation Im H = 0 with q = q,. The "condition of steady-state behavior" introduced at 
the beginning of the paper in this way represents a consequence of the assumed existence of 
the periodic solution (A2) of the equation (AI). Let us now show that the "condition of per- 
iodic behavior" ~y(k,)/~k, = 0 represents a consequence of the assumed uniqueness of this per- 
iodic solution. 

Let us assume that the value of y(k) is negative when k § 0 and k ~ ~, and assume that 
on the contrary, y(k,) = O, but ~y(k,)/3k, ~ 0. Then such a value k** is found, not equal to 
k,, that y(k**) = 0. Assuming ~** = ~(k**, q,), r = r and evaluating the remaining val- 
ues of ~k = ~n from (A5) with the given values of k l** and ~**, it is seen that the series 

oo 

f** (t, x)= ~ t ~e  ~n(~**t-~**~), qD~ =# ~ rr :~ ~ 1, 

will also be a periodic solution of (AI) which is different to (A2), which contradicts the 
assumption of the uniqueness of this solution. 

The equations y(k,) = 0 and ~y/Sk, = 0 determine (for known ~(k,, q,)) both k, and also 
the quantity q,, which up to now have been considered as parameters. In the discussion given 
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above the important assumption of the negative nature of y(k) when k § 0 and k § ~ must be 
confirmed a posteriori. 

Let us now show that the function y(k) which has been introduced coincides with the an- 
alogous function which must be set up formally using the series (4) with y ~ 0. For simpli- 
city, let us again consider the one-dimensional problem (plane waves), when Eq. (I) coincides 
with the equation already investigated in [6], i.e., 

Ot + 3 (1 + ~)2 -~x + A Ox 2 Ox------ ~ 

A =  6 Re tga,  B We 
5 cos 

(A9) 

In the calculations, only the zeroth and second harmonics will be taken into account in 
addition to the first harmonic, i.e., it is assumed that 

2 

~k (t, x) = ~ ~ .  (t) e ~ ' ~ - h "  , r  (t) = ~ *  (t). (A l0 )  
n=- -2  

By substituting (AI0) into (A9), a system of equations of the type (A4) is obtained for 
the problem being investigated: 

dO, = - - [ i  (~ --  3k) --  Ak 2 + Bk  ~] ~ + 3 i k @ _ z ~  + 6ik ( ~ _ ~  + ~o0~), d~o/Ot = O, 
dt (All)  

d ~  = _ [2i (~ - -  3k) -- 4Ak z + 16Bk ~] @~ + 6ikO~ . 

With n = 0, the  equa t i on  appears  to  be d e g e n e r a t e .  The c o n s t a n t  r i s  de termined from the 
c o n d i t i o n  f o r  the  e q u a l i t y  of  the  nondimens iona l  f low r a t e s  i n  wavy f i l m  f low and in  p l an e -  
p a r a l l e l  f i l m  f low [6] ,  whence r = --2r162 The s o l u t i o n  of the  t h i r d  equa t i on  of  (All )  be-  
comes, in  accordance  wi th  (A6): 

02 = 3i [k (7Bk 2 - -  A ) ] - ~ .  

In  t h i s  case ,  Eq. (AS) has the  form 

dq _ 2 q ( A k ~ _ B k ~  - i8 ) 
d--7--- 7 B k 2 " A  q ' 

and hence, 

18 
? (k) = Ak 2 -- Bk  ~ 7Bk 2 - -  A q*' 

which in accuracy agrees with the corresponding expression for y(k) obtained in [6]. 

NOTATION 

A, an, B, quantities introduced in (8); c, dimensionless phase velocity; g, acceleration 
of gravity;[h, ho, film thicknesses in the wavy and nonwavy regimes; k, Z, wave numbers; Q, 
liquid flow rate; q, square of the amplitude of the main harmonic; r, quantity introduced in 
(7); t, dimensionless time; uo, mean velocity in nonwavy regime; v, w, quantities introduced 
in (7); Vx, longitudinal component of dimensionless velocity; x, y, z, dimensionless coordin- 
ates; e, angle between the plane of the substrate and the vertical; 8, supercriticality param- 
eter; ~, growth increment of perturbation; e, long wavelength parameter; I, linear longitud- 
inal scale; v, kinematic viscosity; 0, liquid density; o, surface tension coefficient; Sn, ~ n, 

, ~ , functions in (4); ~, dimensionless wave amplitude; ~, ~, real and complex frequen- 
n cles; ~e, We, Reynolds and Weber numbers; Re,1 , Re,=, critical values of the Reynolds number; 

*, superscript asterisk denotes complex conjugate. 
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FLOW OF A NON-NEWTONIAN LIQUID IN THE GAP BETWEEN A ROTATING 

CYLINDER AND A PERMEABLE SURFACE WITH ROTOR GRANULATION 

V. M. Shapovalov, B. D. Vekhter, 
and N. V. Tyabin 

UDC 532.516 

The isothermal process of rotor granulation of a material having the properties of 
an anomalously viscous liquid is analyzed hydrodynamically. 

One of the highly promising methods for processing of highly viscous media is rotor granu- 
lation. Rotor machines which combine the functions of a pump and a forming device are charac- 
terized by minimum deformation of the material being processed and permit granulation of high- 
ly filled heterogeneous systems. Rotor-type granulators are widely used for processing of 
pastelike materials, suspensions, and polymers in the pharmaceutical, food, and metallurgical 
industries, for production of plastics and rubber parts, in mineral fractionation, and a num- 
ber of other chemical technology processes [i]. 

The available theoretical studies of material flow in granulators [1-3] contain inaccur- 
acies in formulation of the boundary problem. Thus, for example, their authors assume that 
flow terminates in a minimal gap and that excess pressure is equal to zero. This corresponds 
to the Ardichvili concept for a roller process in which the flow occurs at zero matrix perme- 
ability [4]. 

The present study will attempt a hydrodynamic analysis of flow of a non-Newtonian (power- 
law) liquid in a rotor granulator corresponding to the Gaskell concept for roller processes 
[4, 5]. 

Formulation of the Problem. A diagram of the flow is shown in Fig. i. The mass to be 
processed is fed into the working cavity between the rotor and matrix, is held by those parts 
and forced through the perforated matrix. In the general case the peripheral velocity of the 
roller U may not be equal to the translational velocity of the matrix W. We assume that the 
flow is two-dimensional, laminar, and steady-state. The medium is incompressible. Compared 
to viscous forces, inertial and mass forces are negligibly small. Commencing from the con- 
tinuity equation we have v x ~ U + W, v ~ (U + W)h/L, L >> h, where L and h are the charac- 
teristic lengths along the x- and y-ax~s. Evaluation of the terms of the equations of motion 
yields ~Vx/~X ~ (U + W)/L, ~Vx/~y ~ (U + W)/h, 8Vv/~X ~ (U + W).h/L 2. We take ~P/~y = 0, 
i.e., P = P(x). There is no slippage on the working surfaces. The matrix permeability does 
not depend on its velocity of motion and is characterized by an empirical dependence [i, 2] 
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